THE MIDPOINT FORMULA

 Want practice with preliminary concepts first? <u>Locating Points in Quadrants and on Axes</u> Practice with Points

(more mathematical cats)

THE MIDPOINT FORMULA

The midpoint of the line segment between points (x_1, y_1) and (x_2, y_2) is given by the Midpoint Formula:

$$\left(rac{x_1+x_2}{2},rac{y_1+y_2}{2}
ight)$$

Here, x_1 (read as 'x sub 1') denotes the x-value of the first point, and y_1 (read as 'y sub 1') denotes the y-value of the first point. Similarly, x_2 and y_2 denote the x-value and y-value of the second point.

Thus, to find the location that is exactly halfway between two points, you <u>average</u> the *x*-values, and average the *y*-values.

The Midpoint Formula follows easily from the following observations:

- The average of two numbers always lies exactly halfway between the two numbers.
- Referring to the sketch below, $\triangle ABD$ is similar to $\triangle AMC$. That is, these two triangles have the same angles. Why? They both share angle A, and they both have a right angle. Since all the angles in a triangle sum to 180° , the third angles must also be the same.
- Similarity gives us what we need! It tells us that $\triangle ABD$ and $\triangle AMC$ have exactly the same shapes—they're just different sizes. Since \overline{AM} is exactly half of \overline{AB} , \overline{AC} must be exactly half of \overline{AD} . Thus, C is the midpoint between A and D (which can be found by averaging x_1 and x_2).
- Use a similar argument to show that \overline{DE} (which has the same length as \overline{CM}) is exactly half of \overline{DB} .

EXAMPLES:

Question:

Find the midpoint of the line segment between (1, -3) and (-2, 5).

Solution:

$$\left(rac{1+(-2)}{2},rac{-3+5}{2}
ight)=\left(-rac{1}{2},1
ight)$$

Question:

Suppose that (2,3) is exactly halfway between (-1,5) and (x,y). Find x and y.

Solution:

Rephrasing, (2,3) is the midpoint of the segment with endpoints (-1,5) and (x,y). Thus:

$$(2,3)=\left(rac{-1+x}{2},rac{5+y}{2}
ight)$$

use the Midpoint Formula

$$2 = \frac{-1+x}{2}$$
 and $3 = \frac{5+y}{2}$

for ordered pairs to be equal, the first coordinates must be equal and the second coordinates must be equal

$$4 = -1 + x$$
 and $6 = 5 + y$

clear fractions (multiply both sides of both equations by 2)

$$5=x$$
 and $1=y$

finish solving each equation

$$x=5 \ \ {\rm and} \ \ y=1$$

write your solutions in the conventional way